Direct observation of the complex S(IV) equilibria at the liquid-vapor interface
Tillmann Buttersack (),
Ivan Gladich (),
Shirin Gholami,
Clemens Richter,
Rémi Dupuy,
Christophe Nicolas,
Florian Trinter,
Annette Trunschke,
Daniel Delgado,
Pablo Corral Arroyo,
Evelyne A. Parmentier,
Bernd Winter,
Lucia Iezzi,
Antoine Roose,
Anthony Boucly,
Luca Artiglia,
Markus Ammann,
Ruth Signorell and
Hendrik Bluhm ()
Additional contact information
Tillmann Buttersack: Fritz Haber Institute of the Max Planck Society
Ivan Gladich: Hamad Bin Khalifa University
Shirin Gholami: Fritz Haber Institute of the Max Planck Society
Clemens Richter: Fritz Haber Institute of the Max Planck Society
Rémi Dupuy: Laboratoire de Chimie Physique-Matière et Rayonnement
Christophe Nicolas: L’Orme des Merisiers
Florian Trinter: Fritz Haber Institute of the Max Planck Society
Annette Trunschke: Fritz Haber Institute of the Max Planck Society
Daniel Delgado: Fritz Haber Institute of the Max Planck Society
Pablo Corral Arroyo: ETH Zürich
Evelyne A. Parmentier: ETH Zürich
Bernd Winter: Fritz Haber Institute of the Max Planck Society
Lucia Iezzi: Paul Scherrer Institute
Antoine Roose: Paul Scherrer Institute
Anthony Boucly: Paul Scherrer Institute
Luca Artiglia: Paul Scherrer Institute
Markus Ammann: Paul Scherrer Institute
Ruth Signorell: ETH Zürich
Hendrik Bluhm: Fritz Haber Institute of the Max Planck Society
Nature Communications, 2024, vol. 15, issue 1, 1-8
Abstract:
Abstract The multi-phase oxidation of S(IV) plays a crucial role in the atmosphere, leading to the formation of haze and severe pollution episodes. We here contribute to its understanding on a molecular level by reporting experimentally determined pKa values of the various S(IV) tautomers and reaction barriers for SO2 formation pathways. Complementary state-of-the-art molecular-dynamics simulations reveal a depletion of bisulfite at low pH at the liquid-vapor interface, resulting in a different tautomer ratio at the interface compared to the bulk. On a molecular-scale level, we explain this with the formation of a stable contact ion pair between sulfonate and hydronium ions, and with the higher energetic barrier for the dehydration of sulfonic acid at the liquid-vapor interface. Our findings highlight the contrasting physicochemical behavior of interfacial versus bulk environments, where the pH dependence of the tautomer ratio reported here has a significant impact on both SO2 uptake kinetics and reactions involving NOx and H2O2 at aqueous aerosol interfaces.
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-53186-5 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53186-5
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-53186-5
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().