Antisolvent controls the shape and size of anisotropic lead halide perovskite nanocrystals
Kilian Frank,
Nina A. Henke,
Carola Lampe,
Tizian Lorenzen,
Benjamin März,
Xiao Sun,
Sylvio Haas,
Olof Gutowski,
Ann-Christin Dippel,
Veronika Mayer,
Knut Müller-Caspary,
Alexander S. Urban () and
Bert Nickel ()
Additional contact information
Kilian Frank: Ludwig-Maximilians-Universität München
Nina A. Henke: Ludwig-Maximilians-Universität München
Carola Lampe: Ludwig-Maximilians-Universität München
Tizian Lorenzen: Ludwig-Maximilians-Universität München
Benjamin März: Ludwig-Maximilians-Universität München
Xiao Sun: Deutsches Elektronen-Synchrotron DESY
Sylvio Haas: Deutsches Elektronen-Synchrotron DESY
Olof Gutowski: Deutsches Elektronen-Synchrotron DESY
Ann-Christin Dippel: Deutsches Elektronen-Synchrotron DESY
Veronika Mayer: Ludwig-Maximilians-Universität München
Knut Müller-Caspary: Ludwig-Maximilians-Universität München
Alexander S. Urban: Ludwig-Maximilians-Universität München
Bert Nickel: Ludwig-Maximilians-Universität München
Nature Communications, 2024, vol. 15, issue 1, 1-10
Abstract:
Abstract Colloidal lead halide perovskite nanocrystals have potential for lighting applications due to their optical properties. Precise control of the nanocrystal dimensions and composition is a prerequisite for establishing practical applications. However, the rapid nature of their synthesis precludes a detailed understanding of the synthetic pathways, thereby limiting the optimisation. Here, we deduce the formation mechanisms of anisotropic lead halide perovskite nanocrystals, 1D nanorods and 2D nanoplatelets, by combining in situ X-ray scattering and photoluminescence spectroscopy. In both cases, emissive prolate nanoclusters form when the two precursor solutions are mixed. The ensuing antisolvent addition induces the divergent anisotropy: The intermediate nanoclusters are driven into a dense hexagonal mesophase, fusing to form nanorods. Contrastingly, nanoplatelets grow freely dispersed from dissolving nanoclusters, stacking subsequently in lamellar superstructures. Shape and size control of the nanocrystals are determined primarily by the antisolvent’s dipole moment and Hansen hydrogen bonding parameter. Exploiting the interplay of antisolvent and organic ligands could enable more complex nanocrystal geometries in the future.
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-53221-5 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53221-5
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-53221-5
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().