EconPapers    
Economics at your fingertips  
 

Designer bright and fast CsPbBr3 perovskite nanocrystal scintillators for high-speed X-ray imaging

Zhi Yang (), Jisong Yao, Leimeng Xu, Wenxuan Fan and Jizhong Song ()
Additional contact information
Zhi Yang: Zhengzhou University
Jisong Yao: Zhengzhou University
Leimeng Xu: Zhengzhou University
Wenxuan Fan: Zhengzhou University
Jizhong Song: Zhengzhou University

Nature Communications, 2024, vol. 15, issue 1, 1-10

Abstract: Abstract Bright and fast scintillators are highly crucial for high-speed X-ray imaging in the medical diagnostic radiology including angiography and cardiac computed tomography. The CsPbBr3 nanocrystal scintillator featuring a nanosecond radioluminescence decay time is a promising candidate. However, it suffers from a substantial photon self-absorption limiting the light output, and being bright and fast simultaneously is difficult. Here we design and in-situ synthesize multi-site ZnS(Ag)-CsPbBr3 heterostructures to modulate the bright and fast features of scintillators. We find external energy from ZnS(Ag) can effectively transfer to CsPbBr3 based on the non-radiative Förster resonance energy transfer, resulting in a light yield of 40,000 photons MeV−1. By combing a radioluminescence decay time of 36 ns and a spatial resolution of 30 lp mm−1, the scintillator enables high-speed X-ray imaging at 200 frames per second. This study showcases the structure design is significant for obtaining bright and fast perovskite scintillators for the real-time X-ray imaging.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-53263-9 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53263-9

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-53263-9

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53263-9