EconPapers    
Economics at your fingertips  
 

Measuring the dynamic balance of integration and segregation underlying consciousness, anesthesia, and sleep in humans

Hyunwoo Jang, George A. Mashour, Anthony G. Hudetz and Zirui Huang ()
Additional contact information
Hyunwoo Jang: University of Michigan
George A. Mashour: University of Michigan
Anthony G. Hudetz: University of Michigan
Zirui Huang: University of Michigan

Nature Communications, 2024, vol. 15, issue 1, 1-18

Abstract: Abstract Consciousness requires a dynamic balance of integration and segregation in brain networks. We report an fMRI-based metric, the integration-segregation difference (ISD), which captures two key network properties: network efficiency (integration) and clustering (segregation). With this metric, we quantify brain state transitions from conscious wakefulness to unresponsiveness induced by the anesthetic propofol. The observed changes in ISD suggest a profound shift towards the segregation of brain networks during anesthesia. A common unimodal-transmodal sequence of disintegration and reintegration occurs in brain networks during, respectively, loss and return of responsiveness. Machine learning models using integration and segregation data accurately identify awake vs. unresponsive states and their transitions. Metastability (dynamic recurrence of non-equilibrium transient states) is more effectively explained by integration, while complexity (diversity of neural activity) is more closely linked with segregation. A parallel analysis of sleep states produces similar findings. Our results demonstrate that the ISD reliably indexes states of consciousness.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-53299-x Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53299-x

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-53299-x

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53299-x