EconPapers    
Economics at your fingertips  
 

Double-strand breaks in facultative heterochromatin require specific movements and chromatin changes for efficient repair

Marieke R. Wensveen, Aditya A. Dixit, Robin Schendel, Apfrida Kendek, Jan-Paul Lambooij, Marcel Tijsterman, Serafin U. Colmenares and Aniek Janssen ()
Additional contact information
Marieke R. Wensveen: University Medical Center Utrecht, Universiteitsweg 100
Aditya A. Dixit: University Medical Center Utrecht, Universiteitsweg 100
Robin Schendel: Leiden University Medical Center
Apfrida Kendek: University Medical Center Utrecht, Universiteitsweg 100
Jan-Paul Lambooij: University Medical Center Utrecht, Universiteitsweg 100
Marcel Tijsterman: Leiden University Medical Center
Serafin U. Colmenares: University of California Berkeley
Aniek Janssen: University Medical Center Utrecht, Universiteitsweg 100

Nature Communications, 2024, vol. 15, issue 1, 1-14

Abstract: Abstract DNA double-strand breaks (DSBs) must be properly repaired within diverse chromatin domains to maintain genome stability. Whereas euchromatin has an open structure and is associated with transcription, facultative heterochromatin is essential to silence developmental genes and forms compact nuclear condensates, called polycomb bodies. Whether the specific chromatin properties of facultative heterochromatin require distinct DSB repair mechanisms remains unknown. Here, we integrate single DSB systems in euchromatin and facultative heterochromatin in Drosophila melanogaster and find that heterochromatic DSBs rapidly move outside polycomb bodies. These DSB movements coincide with a break-proximal reduction in the canonical heterochromatin mark histone H3 Lysine 27 trimethylation (H3K27me3). We demonstrate that DSB movement and loss of H3K27me3 at heterochromatic DSBs depend on the histone demethylase dUtx. Moreover, loss of dUtx specifically disrupts completion of homologous recombination at heterochromatic DSBs. We conclude that DSBs in facultative heterochromatin require dUtx-mediated loss of H3K27me3 to promote DSB movement and repair.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-53313-2 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53313-2

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-53313-2

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53313-2