EconPapers    
Economics at your fingertips  
 

Mechano-adaptive meta-gels through synergistic chemical and physical information-processing

Brigitta Dúzs (), Oliver Skarsetz, Giorgio Fusi, Claudius Lupfer and Andreas Walther ()
Additional contact information
Brigitta Dúzs: University of Mainz
Oliver Skarsetz: University of Mainz
Giorgio Fusi: University of Mainz
Claudius Lupfer: University of Mainz
Andreas Walther: University of Mainz

Nature Communications, 2024, vol. 15, issue 1, 1-10

Abstract: Abstract Global functional adaptation after local mechanical stimulation, as in mechanobiology and the mimosa plant, is fascinating and ubiquitous in nature. This is achieved by locally sensing mechanical deformation with precise thresholds, processing this information via biochemical circuits, followed by downstream actuation. The integration of such embodied intelligence allowing for mechano-to-chemo-to-function information-processing remains elusive in man-made systems. By merging the fields of chemical circuits and metamaterials, we introduce adaptive metamaterial hydrogels (meta-gels) that can accurately sense mechanical stimuli (local touch and global strain), transmit this information over long distances via reaction-diffusion signaling, and induce downstream mechanical strengthening by growing nanofibril networks, or soft robotic actuation through competitive swelling. All elements of the sensor-processor-actuator system are embedded in the device, functioning autonomously without external feeding reservoirs. Our concept enables designing advanced life-like materials systems that synergistically combine two worlds – chemical circuits for chemical information-processing and metamaterial unit cells for physical information-processing.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-53368-1 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53368-1

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-53368-1

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53368-1