Decomposing causality into its synergistic, unique, and redundant components
Álvaro Martínez-Sánchez (),
Gonzalo Arranz and
Adrián Lozano-Durán
Additional contact information
Álvaro Martínez-Sánchez: Massachusetts Institute of Technology
Gonzalo Arranz: Massachusetts Institute of Technology
Adrián Lozano-Durán: Massachusetts Institute of Technology
Nature Communications, 2024, vol. 15, issue 1, 1-15
Abstract:
Abstract Causality lies at the heart of scientific inquiry, serving as the fundamental basis for understanding interactions among variables in physical systems. Despite its central role, current methods for causal inference face significant challenges due to nonlinear dependencies, stochastic interactions, self-causation, collider effects, and influences from exogenous factors, among others. While existing methods can effectively address some of these challenges, no single approach has successfully integrated all these aspects. Here, we address these challenges with SURD: Synergistic-Unique-Redundant Decomposition of causality. SURD quantifies causality as the increments of redundant, unique, and synergistic information gained about future events from past observations. The formulation is non-intrusive and applicable to both computational and experimental investigations, even when samples are scarce. We benchmark SURD in scenarios that pose significant challenges for causal inference and demonstrate that it offers a more reliable quantification of causality compared to previous methods.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-53373-4 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53373-4
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-53373-4
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().