Macroscale, humidity-insensitive, and stable structural superlubricity achieved with hydrogen-free graphene nanoflakes
Ruiyun Li,
Xing Yang,
Jiacheng Li,
Yongfu Wang () and
Ming Ma ()
Additional contact information
Ruiyun Li: Research Institute of Tsinghua University in Shenzhen
Xing Yang: Chinese Academy of Science
Jiacheng Li: Tsinghua University
Yongfu Wang: Chinese Academy of Science
Ming Ma: Research Institute of Tsinghua University in Shenzhen
Nature Communications, 2024, vol. 15, issue 1, 1-13
Abstract:
Abstract Achieving solid superlubricity in high-humidity environments is of great practical importance yet remains challenging nowadays, due to the complex physicochemical roles of water and concomitant oxidation on solid surfaces. Here we report a facile way to access humidity-insensitive solid superlubricity (coefficient of friction 0.0035) without detectable wear and running-in at a humidity range of 2–80%. Inspired by the concept of structural superlubricity, this is achieved between Au-capped microscale graphite flake and graphene nanoflake-covered hydrogen-free amorphous carbon (GNC a-C). Such GNC a-C exhibits reduced pinning effects of water molecules and weak oxidation, which demonstrates stable structural superlubricity even after air exposure of the surfaces for 365 days. The manufacturability of such design enables the macroscopic scale-up of structural superlubricity, achieving the leap from 4 μm × 4 μm contact to 3 mm ball-supported contact with a wide range of materials. Our results suggest a strategy for the macroscale application of structural superlubricity under ambient condition.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-53462-4 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53462-4
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-53462-4
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().