Unsupervised representation learning of Kohn–Sham states and consequences for downstream predictions of many-body effects
Bowen Hou,
Jinyuan Wu and
Diana Y. Qiu ()
Additional contact information
Bowen Hou: Yale University
Jinyuan Wu: Yale University
Diana Y. Qiu: Yale University
Nature Communications, 2024, vol. 15, issue 1, 1-11
Abstract:
Abstract Representation learning for the electronic structure problem is a major challenge of machine learning in computational condensed matter and materials physics. Within quantum mechanical first principles approaches, density functional theory (DFT) is the preeminent tool for understanding electronic structure, and the high-dimensional DFT wavefunctions serve as building blocks for downstream calculations of correlated many-body excitations and related physical observables. Here, we use variational autoencoders (VAE) for the unsupervised learning of DFT wavefunctions and show that these wavefunctions lie in a low-dimensional manifold within latent space. Our model autonomously determines the optimal representation of the electronic structure, avoiding limitations due to manual feature engineering. To demonstrate the utility of the latent space representation of the DFT wavefunction, we use it for the supervised training of neural networks (NN) for downstream prediction of quasiparticle bandstructures within the GW formalism. The GW prediction achieves a low error of 0.11 eV for a combined test set of two-dimensional metals and semiconductors, suggesting that the latent space representation captures key physical information from the original data. Finally, we explore the generative ability and interpretability of the VAE representation.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-53748-7 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53748-7
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-53748-7
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().