Dynamical transition in controllable quantum neural networks with large depth
Bingzhi Zhang,
Junyu Liu,
Xiao-Chuan Wu,
Liang Jiang and
Quntao Zhuang ()
Additional contact information
Bingzhi Zhang: University of Southern California
Junyu Liu: The University of Chicago
Xiao-Chuan Wu: The University of Chicago
Liang Jiang: The University of Chicago
Quntao Zhuang: University of Southern California
Nature Communications, 2024, vol. 15, issue 1, 1-12
Abstract:
Abstract Understanding the training dynamics of quantum neural networks is a fundamental task in quantum information science with wide impact in physics, chemistry and machine learning. In this work, we show that the late-time training dynamics of quantum neural networks with a quadratic loss function can be described by the generalized Lotka-Volterra equations, leading to a transcritical bifurcation transition in the dynamics. When the targeted value of loss function crosses the minimum achievable value from above to below, the dynamics evolve from a frozen-kernel dynamics to a frozen-error dynamics, showing a duality between the quantum neural tangent kernel and the total error. In both regions, the convergence towards the fixed point is exponential, while at the critical point becomes polynomial. We provide a non-perturbative analytical theory to explain the transition via a restricted Haar ensemble at late time, when the output state approaches the steady state. Via mapping the Hessian to an effective Hamiltonian, we also identify a linearly vanishing gap at the transition point. Compared with the linear loss function, we show that a quadratic loss function within the frozen-error dynamics enables a speedup in the training convergence. The theory findings are verified experimentally on IBM quantum devices.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-53769-2 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53769-2
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-53769-2
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().