Layer codes
Dominic J. Williamson () and
Nouédyn Baspin
Additional contact information
Dominic J. Williamson: University of Sydney
Nouédyn Baspin: University of Sydney
Nature Communications, 2024, vol. 15, issue 1, 1-7
Abstract:
Abstract Quantum computers require memories that are capable of storing quantum information reliably for long periods of time. The surface code is a two-dimensional quantum memory with code parameters that scale optimally with the number of physical qubits, under the constraint of two-dimensional locality. In three spatial dimensions an analogous simple yet optimal code was not previously known. Here we present a family of three dimensional topological codes with optimal scaling code parameters and a polynomial energy barrier. Our codes are based on a construction that takes in a stabilizer code and outputs a three-dimensional topological code with related code parameters. The output codes are topological defect networks formed by layers of surface code joined along one-dimensional junctions, with a maximum stabilizer check weight of six. When the input is a family of good quantum low-density parity-check codes the output codes have optimal scaling. Our results uncover strongly-correlated states of quantum matter that are capable of storing quantum information with the strongest possible protection from errors that is achievable in three dimensions.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-53881-3 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53881-3
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-53881-3
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().