EconPapers    
Economics at your fingertips  
 

High-performance photon-driven DC motor system

Dingyi Lin, Fujin Deng (), Wei Hua, Ming Cheng, Zhe Chen and Zhiming Wang
Additional contact information
Dingyi Lin: Southeast University
Fujin Deng: Southeast University
Wei Hua: Southeast University
Ming Cheng: Southeast University
Zhe Chen: Aalborg University
Zhiming Wang: University of Electronic Science and Technology of China

Nature Communications, 2024, vol. 15, issue 1, 1-15

Abstract: Abstract Direct current (DC) motors are crucial in drones, robotics, and electrical devices. Conventionally, the DC motor is driven by a switching electricity converter, which utilizes electrical energy to drive mechanical motion. However, the rapid on-off switching actions in the switching electricity converter would cause electromagnetic interference (EMI), impairing the functionality of drive systems. Here, we propose a photon-driven DC motor system based on photonic converter, which utilizes optical energy to drive mechanical motion, and therefore avoids EMI derived from electrical switching and immunizes against EMI during electrical energy transmission in conventional switching electricity-driven DC motor system. The operation principle and power modulation-based speed control are also presented for the proposed photon-driven DC motor system. The experiments demonstrate that the motor accurately follows the speed reference and withstands load disturbances. This innovation opens new potential for DC motor applications by improving electromagnetic compatibility.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-53924-9 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53924-9

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-53924-9

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53924-9