EconPapers    
Economics at your fingertips  
 

Thermal stability and coalescence dynamics of exsolved metal nanoparticles at charged perovskite surfaces

Moritz L. Weber (), Dylan Jennings, Sarah Fearn, Andrea Cavallaro, Michal Prochazka, Alexander Gutsche, Lisa Heymann, Jia Guo, Liam Yasin, Samuel J. Cooper, Joachim Mayer, Wolfgang Rheinheimer, Regina Dittmann, Rainer Waser, Olivier Guillon, Christian Lenser, Stephen J. Skinner, Ainara Aguadero, Slavomír Nemšák () and Felix Gunkel ()
Additional contact information
Moritz L. Weber: Lawrence Berkeley National Laboratory
Dylan Jennings: Forschungszentrum Juelich GmbH
Sarah Fearn: Imperial College London
Andrea Cavallaro: Imperial College London
Michal Prochazka: Lawrence Berkeley National Laboratory
Alexander Gutsche: Forschungszentrum Juelich GmbH
Lisa Heymann: Forschungszentrum Juelich GmbH
Jia Guo: Imperial College London
Liam Yasin: Imperial College London
Samuel J. Cooper: Imperial College London
Joachim Mayer: Forschungszentrum Juelich GmbH
Wolfgang Rheinheimer: Forschungszentrum Juelich GmbH
Regina Dittmann: Forschungszentrum Juelich GmbH
Rainer Waser: Forschungszentrum Juelich GmbH
Olivier Guillon: Forschungszentrum Juelich GmbH
Christian Lenser: Forschungszentrum Juelich GmbH
Stephen J. Skinner: Imperial College London
Ainara Aguadero: Imperial College London
Slavomír Nemšák: Lawrence Berkeley National Laboratory
Felix Gunkel: Forschungszentrum Juelich GmbH

Nature Communications, 2024, vol. 15, issue 1, 1-14

Abstract: Abstract Exsolution reactions enable the synthesis of oxide-supported metal nanoparticles, which are desirable as catalysts in green energy conversion technologies. It is crucial to precisely tailor the nanoparticle characteristics to optimize the catalysts’ functionality, and to maintain the catalytic performance under operation conditions. We use chemical (co)-doping to modify the defect chemistry of exsolution-active perovskite oxides and examine its influence on the mass transfer kinetics of Ni dopants towards the oxide surface and on the subsequent coalescence behavior of the exsolved nanoparticles during a continuous thermal reduction treatment. Nanoparticles that exsolve at the surface of the acceptor-type fast-oxygen-ion-conductor SrTi0.95Ni0.05O3−δ (STNi) show a high surface mobility leading to a very low thermal stability compared to nanoparticles that exsolve at the surface of donor-type SrTi0.9Nb0.05Ni0.05O3−δ (STNNi). Our analysis indicates that the low thermal stability of exsolved nanoparticles at the acceptor-doped perovskite surface is linked to a high oxygen vacancy concentration at the nanoparticle-oxide interface. For catalysts that require fast oxygen exchange kinetics, exsolution synthesis routes in dry hydrogen conditions may hence lead to accelerated degradation, while humid reaction conditions may mitigate this failure mechanism.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-54008-4 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54008-4

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-54008-4

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54008-4