EconPapers    
Economics at your fingertips  
 

Ohm’s law lost and regained: observation and impact of transmission and velocity zeros

Krishna Joshi (), Israel Kurtz, Zhou Shi and Azriel Z. Genack ()
Additional contact information
Krishna Joshi: Flushing
Israel Kurtz: Flushing
Zhou Shi: Flushing
Azriel Z. Genack: Flushing

Nature Communications, 2024, vol. 15, issue 1, 1-11

Abstract: Abstract The quantum conductance and its classical wave analogue, the transmittance, are given by the sum of the eigenvalues of the transmission matrix. However, neither measurements nor theoretical analysis of the transmission eigenchannels have been carried out to explain the dips in conductance found in simulations as new channels are introduced. Here, we measure the microwave transmission matrices of random waveguides and find the spectra of all transmission eigenvalues, even at dips in the lowest transmission eigenchannel that are orders of magnitude below the noise in the transmission matrix. Transmission vanishes both at topological transmission zeros, where the energy density at the sample output vanishes, and at crossovers to new channels, where the longitudinal velocity vanishes. Zeros of transmission pull down all the transmission eigenvalues and thereby produce dips in the transmittance. These dips and the ability to probe the characteristics of even the lowest transmission eigenchannel are due to correlation among the eigenvalues. The precise tracking of dips in the conductance by peaks in the density of states points to a further correlation between zeros and poles of the transmission matrix. The conductance approaches Ohm’s law as the sample width increases in accord with the correspondence principle.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-54012-8 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54012-8

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-54012-8

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54012-8