EconPapers    
Economics at your fingertips  
 

Enhanced production of 60Fe in massive stars

A. Spyrou (), D. Richman, A. Couture, C. E. Fields, S. N. Liddick, K. Childers, B. P. Crider, P. A. DeYoung, A. C. Dombos, P. Gastis, M. Guttormsen, K. Hermansen, A. C. Larsen, R. Lewis, S. Lyons, J. E. Midtbø, S. Mosby, D. Muecher, F. Naqvi, A. Palmisano-Kyle, G. Perdikakis, C. Prokop, H. Schatz, M. K. Smith, C. Sumithrarachchi and A. Sweet
Additional contact information
A. Spyrou: Michigan State University
D. Richman: Michigan State University
A. Couture: Los Alamos National Laboratory
C. E. Fields: Los Alamos National Laboratory
S. N. Liddick: Michigan State University
K. Childers: Michigan State University
B. P. Crider: Michigan State University
P. A. DeYoung: Hope College
A. C. Dombos: Michigan State University
P. Gastis: Los Alamos National Laboratory
M. Guttormsen: University of Oslo
K. Hermansen: Michigan State University
A. C. Larsen: University of Oslo
R. Lewis: Michigan State University
S. Lyons: Michigan State University
J. E. Midtbø: University of Oslo
S. Mosby: Los Alamos National Laboratory
D. Muecher: Institut für Kernphysik der Universität zu Köln
F. Naqvi: Michigan State University
A. Palmisano-Kyle: Michigan State University
G. Perdikakis: Central Michigan University
C. Prokop: Michigan State University
H. Schatz: Michigan State University
M. K. Smith: Michigan State University
C. Sumithrarachchi: Michigan State University
A. Sweet: Lawrence Livermore National Laboratory

Nature Communications, 2024, vol. 15, issue 1, 1-7

Abstract: Abstract Massive stars are a major source of chemical elements in the cosmos, ejecting freshly produced nuclei through winds and core-collapse supernova explosions into the interstellar medium. Among the material ejected, long-lived radioisotopes, such as 60Fe (iron) and 26Al (aluminum), offer unique signs of active nucleosynthesis in our galaxy. There is a long-standing discrepancy between the observed 60Fe/26Al ratio by γ-ray telescopes and predictions from supernova models. This discrepancy has been attributed to uncertainties in the nuclear reaction networks producing 60Fe, and one reaction in particular, the neutron-capture on 59Fe. Here we present experimental results that provide a strong constraint on this reaction. We use these results to show that the production of 60Fe in massive stars is higher than previously thought, further increasing the discrepancy between observed and predicted 60Fe/26Al ratios. The persisting discrepancy can therefore not be attributed to nuclear uncertainties, and points to issues in massive-star models.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-54040-4 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54040-4

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-54040-4

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54040-4