EconPapers    
Economics at your fingertips  
 

Scalable robust photothermal superhydrophobic coatings for efficient anti-icing and de-icing in simulated/real environments

Mingyuan Mao, Jinfei Wei, Bucheng Li, Lingxiao Li, Xiaopeng Huang and Junping Zhang ()
Additional contact information
Mingyuan Mao: Chinese Academy of Sciences
Jinfei Wei: Chinese Academy of Sciences
Bucheng Li: Chinese Academy of Sciences
Lingxiao Li: Chinese Academy of Sciences
Xiaopeng Huang: Chinese Academy of Sciences
Junping Zhang: Chinese Academy of Sciences

Nature Communications, 2024, vol. 15, issue 1, 1-12

Abstract: Abstract Photothermal superhydrophobic coatings are supposed promising to prevent ice accumulation on infrastructures but often experience significant performance degradation in real icing conditions and lack mechanical robustness. Here, we report design of robust photothermal superhydrophobic coatings with three-tier hierarchical micro-/nano-/nanostructures by deposition of nanosized MOFs on natural attapulgite nanorods, fluorination, controlled phase separation of a hydrophobic adhesive and spraying assembly. Phase separation degree and adhesive content significantly influence the coatings’ properties by regulating the structural parameters and morphology. In simulated/real icing environments, the coatings simultaneously show (i) high superhydrophobicity and stable Cassie-Baxter states due to their low-surface-energy, three-tier micro-/nano-/nanostructure, (ii) excellent photothermal effect primarily due to nanosized MOFs, and (iii) good mechanical robustness by the phase-separated adhesive, reinforcement with attapulgite and the coatings’ self-similar structure. Accordingly, combined with low thermal conductivity, the coatings exhibit remarkable anti-icing/frosting (e.g., no freezing in at least 150 min and almost free of frost in 25 min) and de-icing/frosting performances (e.g., fast de-icing in 12.7 min and fast de-frosting in 16.7 min) in such environments. Furthermore, we realize large-scale preparation of the coatings at reasonable costs. The coatings have great application potential for anti-icing and de-icing in the real world by efficiently using natural sunlight.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-54058-8 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54058-8

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-54058-8

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54058-8