Integrating spoken instructions into flight trajectory prediction to optimize automation in air traffic control
Dongyue Guo,
Zheng Zhang,
Bo Yang,
Jianwei Zhang,
Hongyu Yang and
Yi Lin ()
Additional contact information
Dongyue Guo: Sichuan University
Zheng Zhang: Sichuan University
Bo Yang: Sichuan University
Jianwei Zhang: Sichuan University
Hongyu Yang: Sichuan University
Yi Lin: Sichuan University
Nature Communications, 2024, vol. 15, issue 1, 1-15
Abstract:
Abstract The booming air transportation industry inevitably burdens air traffic controllers’ workload, causing unexpected human factor-related incidents. Current air traffic control systems fail to consider spoken instructions for traffic prediction, bringing significant challenges in detecting human errors during real-time traffic operations. Here, we present an automation paradigm integrating controlling intent into the information processing loop through the spoken instruction-aware flight trajectory prediction framework. A 3-stage progressive multi-modal learning paradigm is proposed to address the modality gap between the trajectory and spoken instructions, as well as minimize the data requirements. Experiments on a real-world dataset show the proposed framework achieves flight trajectory prediction with high predictability and timeliness, obtaining over 20% relative reduction in mean deviation error. Moreover, the generalizability of the proposed framework is also confirmed by various model architectures. The proposed framework can formulate full-automated information processing in real-world air traffic applications, supporting human error detection and enhancing aviation safety.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-54069-5 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54069-5
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-54069-5
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().