EconPapers    
Economics at your fingertips  
 

Surface superconductivity in the topological Weyl semimetal t-PtBi2

Sebastian Schimmel (), Yanina Fasano, Sven Hoffmann, Julia Besproswanny, Laura Teresa Corredor Bohorquez, Joaquín Puig, Bat-Chen Elshalem, Beena Kalisky, Grigory Shipunov, Danny Baumann, Saicharan Aswartham, Bernd Büchner and Christian Hess ()
Additional contact information
Sebastian Schimmel: Bergische Universität Wuppertal
Yanina Fasano: Leibniz-Institute for Solid State and Materials Research (IFW-Dresden)
Sven Hoffmann: Bergische Universität Wuppertal
Julia Besproswanny: Bergische Universität Wuppertal
Laura Teresa Corredor Bohorquez: Leibniz-Institute for Solid State and Materials Research (IFW-Dresden)
Joaquín Puig: Leibniz-Institute for Solid State and Materials Research (IFW-Dresden)
Bat-Chen Elshalem: Bar-Ilan University
Beena Kalisky: Bar-Ilan University
Grigory Shipunov: Leibniz-Institute for Solid State and Materials Research (IFW-Dresden)
Danny Baumann: Leibniz-Institute for Solid State and Materials Research (IFW-Dresden)
Saicharan Aswartham: Leibniz-Institute for Solid State and Materials Research (IFW-Dresden)
Bernd Büchner: Leibniz-Institute for Solid State and Materials Research (IFW-Dresden)
Christian Hess: Bergische Universität Wuppertal

Nature Communications, 2024, vol. 15, issue 1, 1-6

Abstract: Abstract Topological superconductivity is a promising concept for generating fault-tolerant qubits. Early experimental studies looked at hybrid systems and doped intrinsic topological or superconducting materials at very low temperatures. However, higher critical temperatures are indispensable for technological exploitation. Recent angle-resolved photoemission spectroscopy results have revealed that superconductivity in the type-I Weyl semimetal—trigonal PtBi2 (t-PtBi2)—is located at the Fermi-arc surface states, which renders the material a potential candidate for intrinsic topological superconductivity. Here we show, using scanning tunnelling microscopy and spectroscopy, that t-PtBi2 presents surface superconductivity at elevated temperatures (5 K). The gap magnitude is elusive: it is spatially inhomogeneous and spans from 0 to 20 meV. In particular, the large gap value and the shape of the quasiparticle excitation spectrum resemble the phenomenology of high-Tc superconductors. To our knowledge, this is the largest superconducting gap so far measured in a topological material. Moreover, we show that the superconducting state at 5 K persists in magnetic fields up to 12 T.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-54389-6 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54389-6

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-54389-6

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54389-6