EconPapers    
Economics at your fingertips  
 

High performance, pH-resistant membranes for efficient lithium recovery from spent batteries

Yafei Su, Huawen Peng, Xufei Liu, Jiapeng Li and Qiang Zhao ()
Additional contact information
Yafei Su: Huazhong University of Science and Technology
Huawen Peng: Huazhong University of Science and Technology
Xufei Liu: Huazhong University of Science and Technology
Jiapeng Li: Huazhong University of Science and Technology
Qiang Zhao: Huazhong University of Science and Technology

Nature Communications, 2024, vol. 15, issue 1, 1-9

Abstract: Abstract Cation separation under extreme pH is crucial for lithium recovery from spent batteries, but conventional polyamide membranes suffer from pH-induced hydrolysis. Preparation of high performance nanofiltration membranes with excellent pH-resistance remains a challenge. Here we synthesize a high performance nanofiltration membrane (1,4,7,10-Tetraazacyclododecane (TAD)−1,3,5-Tris(bromomethyl)benzene (TBMB) thin film composite membranes (TFCMs)) with excellent pH-stability through interfacial quaternization reaction between TAD and TBMB. Due to the high stability of “C-N” bonds in TAD-TBMB TFCMs, its separation performance is stable even after 70 days immersion in concentrated acid (3 M H2SO4, HNO3, or HCl) and base (3 M NaOH), which is at least 15 times more stable than benchmark commercial membranes. The membrane shows an overall separation performance (11.3 L m−2 h−1 bar−1 (LMHB), RCo2+: 97% in 2 M H2SO4) due to the size sieving and the intensified charge repulsion, outperforming many of the state-of-the-art membranes. Finally, the TAD-TBMB TFCM remains stable during 30-days continuous nanofiltration of 2 M H2SO4 and leachate (2 M H2SO4, ions: 6.2 g L−1) from spent batteries.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-54503-8 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54503-8

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-54503-8

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54503-8