Osmotic disruption of chromatin induces Topoisomerase 2 activity at sites of transcriptional stress
William H. Gittens (),
Rachal M. Allison,
Ellie M. Wright,
George G. B. Brown and
Matthew J. Neale ()
Additional contact information
William H. Gittens: University of Sussex
Rachal M. Allison: University of Sussex
Ellie M. Wright: University of Sussex
George G. B. Brown: University of Sussex
Matthew J. Neale: University of Sussex
Nature Communications, 2024, vol. 15, issue 1, 1-16
Abstract:
Abstract Transcription generates superhelical stress in DNA that poses problems for genome stability, but determining when and where such stress arises within chromosomes is challenging. Here, using G1-arrested S. cerevisiae cells, and employing rapid fixation and ultra-sensitive enrichment, we utilise the physiological activity of endogenous topoisomerase 2 (Top2) as a probe of transcription-induced superhelicity. We demonstrate that Top2 activity is surprisingly uncorrelated with transcriptional activity, suggesting that superhelical stress is obscured from Top2 within chromatin in vivo. We test this idea using osmotic perturbation—a treatment that transiently destabilises chromatin in vivo—revealing that Top2 activity redistributes within sub-minute timescales into broad zones patterned by long genes, convergent gene arrays, and transposon elements—and also by acute transcriptional induction. We propose that latent superhelical stress is normally absorbed by the intrinsic topological buffering capacity of chromatin, helping to avoid spurious topoisomerase activity arising within the essential coding regions of the genome.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-54567-6 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54567-6
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-54567-6
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().