EconPapers    
Economics at your fingertips  
 

Enhanced warming of European mountain permafrost in the early 21st century

Jeannette Noetzli (), Ketil Isaksen, Jamie Barnett, Hanne H. Christiansen, Reynald Delaloye, Bernd Etzelmüller, Daniel Farinotti, Thomas Gallemann, Mauro Guglielmin, Christian Hauck, Christin Hilbich, Martin Hoelzle, Christophe Lambiel, Florence Magnin, Marc Oliva, Luca Paro, Paolo Pogliotti, Claudia Riedl, Philippe Schoeneich, Mauro Valt, Andreas Vieli and Marcia Phillips
Additional contact information
Jeannette Noetzli: WSL Institute for Snow and Avalanche Research SLF
Ketil Isaksen: Norwegian Meteorological Institute
Jamie Barnett: Stockholm University
Hanne H. Christiansen: University Centre in Svalbard
Reynald Delaloye: University of Fribourg
Bernd Etzelmüller: University of Oslo
Daniel Farinotti: ETH Zurich
Thomas Gallemann: Bavarian Environment Agency
Mauro Guglielmin: Insubria University
Christian Hauck: University of Fribourg
Christin Hilbich: University of Fribourg
Martin Hoelzle: University of Fribourg
Christophe Lambiel: University of Lausanne
Florence Magnin: CNRS/Université Savoie Mont-Blanc
Marc Oliva: Universitat de Barcelona
Luca Paro: Environmental Protection Agency of Piedmont
Paolo Pogliotti: Environmental Protection Agency of Valle d’Aosta
Claudia Riedl: GeoSphere Austria
Philippe Schoeneich: Université Grenoble Alpes
Mauro Valt: Centro Valanghe di Arabba
Andreas Vieli: University of Zurich
Marcia Phillips: WSL Institute for Snow and Avalanche Research SLF

Nature Communications, 2024, vol. 15, issue 1, 1-15

Abstract: Abstract Mountain permafrost, constituting 30% of the global permafrost area, is sensitive to climate change and strongly impacts mountain ecosystems and communities. This study examines 21st century permafrost warming in European mountains using decadal ground temperature data from sixty-four boreholes in the Alps, Scandinavia, Iceland, Sierra Nevada and Svalbard. During 2013–2022, warming rates at 10 metres depth exceed 1 °C dec−1 in cases, generally surpassing previous estimates because of accelerated warming and the use of a comprehensive data set. Substantial permafrost warming occurred at cold and ice-poor bedrock sites at high elevations and latitudes, at rates comparable to surface air temperature increase. In contrast, latent heat effects in ice-rich ground near 0 °C reduce warming rates and mask important changes of mountain permafrost substrates. The warming patterns observed are consistent across all sites, depths and time periods. For the coming decades, the propagation of permafrost warming to greater depths is largely predetermined already.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-54831-9 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54831-9

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-54831-9

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54831-9