Short tandem repeats delineate gene bodies across eukaryotes
William B. Reinar (),
Anders K. Krabberød,
Vilde O. Lalun,
Melinka A. Butenko and
Kjetill S. Jakobsen ()
Additional contact information
William B. Reinar: University of Oslo
Anders K. Krabberød: University of Oslo
Vilde O. Lalun: University of Oslo
Melinka A. Butenko: University of Oslo
Kjetill S. Jakobsen: University of Oslo
Nature Communications, 2024, vol. 15, issue 1, 1-13
Abstract:
Abstract Short tandem repeats (STRs) have emerged as important and hypermutable sites where genetic variation correlates with gene expression in plant and animal systems. Recently, it has been shown that a broad range of transcription factors (TFs) are affected by STRs near or in the DNA target binding site. Despite this, the distribution of STR motif repetitiveness in eukaryote genomes is still largely unknown. Here, we identify monomer and dimer STR motif repetitiveness in 5.1 billion 10-bp windows upstream of translation starts and downstream of translation stops in 25 million genes spanning 1270 species across the eukaryotic Tree of Life. We report that all surveyed genomes have gene-proximal shifts in motif repetitiveness. Within genomes, variation in gene-proximal repetitiveness landscapes correlated to the function of genes; genes with housekeeping functions were depleted in upstream and downstream repetitiveness. Furthermore, the repetitiveness landscapes correlated with TF binding sites, indicating that gene function has evolved in conjunction with cis-regulatory STRs and TFs that recognize repetitive sites. These results suggest that the hypermutability inherent to STRs is canalized along the genome sequence and contributes to regulatory and eco-evolutionary dynamics in all eukaryotes.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-55276-w Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-55276-w
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-55276-w
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().