EconPapers    
Economics at your fingertips  
 

AI allows pre-screening of FGFR3 mutational status using routine histology slides of muscle-invasive bladder cancer

Pierre-Antoine Bannier (), Charlie Saillard, Philipp Mann, Maxime Touzot, Charles Maussion, Christian Matek, Niklas Klümper, Johannes Breyer, Ralph Wirtz, Danijel Sikic, Bernd Schmitz-Dräger, Bernd Wullich, Arndt Hartmann, Sebastian Försch and Markus Eckstein ()
Additional contact information
Pierre-Antoine Bannier: Owkin
Charlie Saillard: Owkin
Philipp Mann: Owkin
Maxime Touzot: Owkin
Charles Maussion: Owkin
Christian Matek: Friedrich-Alexander-Universität Erlangen-Nürnberg
Niklas Klümper: University Hospital Bonn
Johannes Breyer: University of Regensburg
Ralph Wirtz: STRATIFYER Molecular Pathology
Danijel Sikic: Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN) and Comprehensive Cancer Center Alliance WERA (CCC WERA)
Bernd Schmitz-Dräger: St. Theresienkrankenhaus
Bernd Wullich: Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN) and Comprehensive Cancer Center Alliance WERA (CCC WERA)
Arndt Hartmann: Friedrich-Alexander-Universität Erlangen-Nürnberg
Sebastian Försch: Johannes Gutenberg-Universität Mainz
Markus Eckstein: Friedrich-Alexander-Universität Erlangen-Nürnberg

Nature Communications, 2024, vol. 15, issue 1, 1-11

Abstract: Abstract Pathogenic activating mutations in the fibroblast growth factor receptor 3 (FGFR3) drive disease maintenance and progression in urothelial cancer. 10–15% of muscle-invasive and metastatic urothelial cancer (MIBC/mUC) are FGFR3-mutant. Selective targeting of FGFR3 hotspot mutations with tyrosine kinase inhibitors (e.g., erdafitinib) is approved for mUC and requires FGFR3 mutational testing. However, current testing assays (polymerase chain reaction or next-generation sequencing) necessitate high tissue quality, have long turnover time, and are expensive. To overcome these limitations, we develop a deep-learning model that detects FGFR3 mutations using routine hematoxylin-eosin slides. Encompassing 1222 cases, our study is a large-scale validation of a model prescreening FGFR3 mutations for MIBC and mUC patients. In this work, we demonstrate that our model achieves high sensitivity (>93%) on advanced and metastatic cases while reducing molecular testing by 40% on average, thereby offering a cost-effective and rapid pre-screening tool for identifying patients eligible for FGFR3 targeted therapies.

Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-55331-6 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-55331-6

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-55331-6

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-55331-6