EconPapers    
Economics at your fingertips  
 

ATLAS-seq: a microfluidic single-cell TCR screen for antigen-reactive TCRs

Siwei Luo, Amber Notaro and Lan Lin ()
Additional contact information
Siwei Luo: Children’s Hospital of Philadelphia
Amber Notaro: Children’s Hospital of Philadelphia
Lan Lin: Children’s Hospital of Philadelphia

Nature Communications, 2025, vol. 16, issue 1, 1-17

Abstract: Abstract Discovering antigen-reactive T cell receptors (TCRs) is central to developing effective engineered T cell immunotherapies. However, the conventional technologies for isolating antigen-reactive TCRs (i.e., major histocompatibility complex (MHC) multimer staining) focus on high-affinity interactions between the TCR and MHC-antigen complex, and may fail to identify TCRs with high efficacy for activating T cells. Here, we develop a microfluidic single-cell screening method for antigen-reactive T cells named ATLAS-seq (Aptamer-based T Lymphocyte Activity Screening and SEQuencing). This technology isolates and characterizes activated T cells via an aptamer-based fluorescent molecular sensor, which monitors the cytotoxic cytokine IFNγ secretion from single T cells upon antigen stimulation, followed by single-cell RNA and single-cell TCR sequencing. We use ATLAS-seq to screen TCRs reactive to cytomegalovirus (CMV) or prostate specific antigen (PSA) from peripheral blood mononuclear cells (PBMCs). ATLAS-seq identifies distinct TCR clonotype populations with higher T cell activation levels compared to TCRs recovered by MHC multimer staining. Select TCR clonotypes from ATLAS-seq are more efficient in target cell killing than those from MHC multimer staining. Collectively, ATLAS-seq provides an efficient and broadly applicable technology to screen antigen-reactive TCRs for engineered T cell immunotherapy.

Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-54675-3 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-54675-3

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-54675-3

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-54675-3