Meta-EA: a gene-specific combination of available computational tools for predicting missense variant effects
Panagiotis Katsonis () and
Olivier Lichtarge ()
Additional contact information
Panagiotis Katsonis: One Baylor Plaza
Olivier Lichtarge: One Baylor Plaza
Nature Communications, 2025, vol. 16, issue 1, 1-13
Abstract:
Abstract Computational methods for estimating missense variant impact suffer from inconsistent performance across genes, which poses a major challenge for their reliable use in clinical practice. While ensemble scores leverage multiple prediction methods to enhance consistency, the overrepresentation of certain genes in the training data can bias their outcomes. To address this critical limitation, we propose a gene-specific ensemble framework trained on reference computational annotations rather than on clinical or experimental data. Accordingly, we generate Meta-EA ensemble scores that achieve comparable performance to the top individual predicting method for each gene set. Incorporating the effects of splicing and the allele frequency of human polymorphisms further enhances the performance of Meta-EA, achieving an area under the receiver operating characteristic curve of 0.97 for both gene-balanced and imbalanced clinical assessments. In conclusion, this work leverages the wealth of existing variant impact prediction approaches to generate improved estimations for clinical interpretation.
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-55066-4 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55066-4
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-55066-4
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().