Gigantic Tellegen responses in metamaterials
Qingdong Yang,
Xinhua Wen,
Zhongfu Li,
Oubo You and
Shuang Zhang ()
Additional contact information
Qingdong Yang: University of Hong Kong
Xinhua Wen: University of Hong Kong
Zhongfu Li: University of Hong Kong
Oubo You: University of Hong Kong
Shuang Zhang: University of Hong Kong
Nature Communications, 2025, vol. 16, issue 1, 1-7
Abstract:
Abstract Tellegen medium has long been a topic of debate, with its existence being contested over several decades. It was first proposed by Tellegen in 1948 and is characterized by a real-valued cross coupling between electric and magnetic responses, distinguishing it from the well-known chiral medium that has imaginary coupling coefficients. Significantly, Tellegen responses are closely linked to axion dynamics, an extensively studied subject in condensed matter physics. Here, we report the realization of Tellegen metamaterials in the microwave region through a judicious combination of subwavelength metallic resonators, gyromagnetic materials, and permanent magnets. We observe the key signature of the Tellegen response – a Kerr rotation for reflected wave, while the polarization remains the same in the transmission direction. The retrieved effective Tellegen parameter is several orders of magnitude greater than that of natural materials. Our work opens door to a variety of nonreciprocal photonic devices and may provide a platform for studying axion physics.
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-55159-0 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55159-0
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-55159-0
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().