Deciphering the effect of UM171 on human hematopoietic progenitor cell fate through clonal analysis
Patrick Coulombe,
Elisa Tomellini,
Jalila Chagraoui,
Nadine Mayotte and
Guy Sauvageau ()
Additional contact information
Patrick Coulombe: University of Montreal
Elisa Tomellini: University of Montreal
Jalila Chagraoui: University of Montreal
Nadine Mayotte: University of Montreal
Guy Sauvageau: University of Montreal
Nature Communications, 2025, vol. 16, issue 1, 1-13
Abstract:
Abstract Ex vivo expansion of hematopoietic stem cells (HSC) requires the maintenance of a stemness state while cells are proliferating. This can be achieved via exposure to UM171 which leads to the degradation of chromatin modifiers and prevents the loss of key epigenetic marks. However, the chromatin landscape varies across populations within the hematopoietic system and the effect of UM171 on self-renewal and differentiation potential of different hematopoietic progenitor cells is less characterized. To address this, we use the CellTag barcoding approach to track the fate of individual stem and progenitor cells during in vitro expansion. We show that, in addition to its HSC self-renewing property, UM171 specifically modulates cell fate of a precursor common to erythroid, megakaryocytic, and mast cells in favor of self-renewal and a mast-bias differentiation trajectory. This differentiation bias can be driven by pro-inflammatory signaling pathways that are activated downstream of UM171 and results in an abundant mast cell population that can be transplanted as part of the graft to populate mice tissues in xenotransplantation studies.
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-55225-7 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55225-7
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-55225-7
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().