EconPapers    
Economics at your fingertips  
 

A scaling law to model the effectiveness of identification techniques

Luc Rocher (), Julien M. Hendrickx and Yves-Alexandre de Montjoye ()
Additional contact information
Luc Rocher: University of Oxford
Julien M. Hendrickx: Université catholique de Louvain
Yves-Alexandre de Montjoye: Imperial College London

Nature Communications, 2025, vol. 16, issue 1, 1-11

Abstract: Abstract AI techniques are increasingly being used to identify individuals both offline and online. However, quantifying their effectiveness at scale and, by extension, the risks they pose remains a significant challenge. Here, we propose a two-parameter Bayesian model for exact matching techniques and derive an analytical expression for correctness (κ), the fraction of people accurately identified in a population. We then generalize the model to forecast how κ scales from small-scale experiments to the real world, for exact, sparse, and machine learning-based robust identification techniques. Despite having only two degrees of freedom, our method closely fits 476 correctness curves and strongly outperforms curve-fitting methods and entropy-based rules of thumb. Our work provides a principled framework for forecasting the privacy risks posed by identification techniques, while also supporting independent accountability efforts for AI-based biometric systems.

Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-55296-6 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55296-6

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-55296-6

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55296-6