EconPapers    
Economics at your fingertips  
 

Verifiable measurement-based quantum random sampling with trapped ions

Martin Ringbauer (), Marcel Hinsche, Thomas Feldker, Paul K. Faehrmann, Juani Bermejo-Vega, Claire L. Edmunds, Lukas Postler, Roman Stricker, Christian D. Marciniak, Michael Meth, Ivan Pogorelov, Rainer Blatt, Philipp Schindler, Jens Eisert, Thomas Monz and Dominik Hangleiter ()
Additional contact information
Martin Ringbauer: Universität Innsbruck, Institut für Experimentalphysik
Marcel Hinsche: Freie Universität Berlin
Thomas Feldker: Universität Innsbruck, Institut für Experimentalphysik
Paul K. Faehrmann: Freie Universität Berlin
Juani Bermejo-Vega: Freie Universität Berlin
Claire L. Edmunds: Universität Innsbruck, Institut für Experimentalphysik
Lukas Postler: Universität Innsbruck, Institut für Experimentalphysik
Roman Stricker: Universität Innsbruck, Institut für Experimentalphysik
Christian D. Marciniak: Universität Innsbruck, Institut für Experimentalphysik
Michael Meth: Universität Innsbruck, Institut für Experimentalphysik
Ivan Pogorelov: Universität Innsbruck, Institut für Experimentalphysik
Rainer Blatt: Universität Innsbruck, Institut für Experimentalphysik
Philipp Schindler: Universität Innsbruck, Institut für Experimentalphysik
Jens Eisert: Freie Universität Berlin
Thomas Monz: Universität Innsbruck, Institut für Experimentalphysik
Dominik Hangleiter: University of Maryland & NIST

Nature Communications, 2025, vol. 16, issue 1, 1-9

Abstract: Abstract Quantum computers are now on the brink of outperforming their classical counterparts. One way to demonstrate the advantage of quantum computation is through quantum random sampling performed on quantum computing devices. However, existing tools for verifying that a quantum device indeed performed the classically intractable sampling task are either impractical or not scalable to the quantum advantage regime. The verification problem thus remains an outstanding challenge. Here, we experimentally demonstrate efficiently verifiable quantum random sampling in the measurement-based model of quantum computation on a trapped-ion quantum processor. We create and sample from random cluster states, which are at the heart of measurement-based computing, up to a size of 4 × 4 qubits. By exploiting the structure of these states, we are able to recycle qubits during the computation to sample from entangled cluster states that are larger than the qubit register. We then efficiently estimate the fidelity to verify the prepared states—in single instances and on average—and compare our results to cross-entropy benchmarking. Finally, we study the effect of experimental noise on the certificates. Our results and techniques provide a feasible path toward a verified demonstration of a quantum advantage.

Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-55342-3 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55342-3

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-55342-3

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55342-3