Quantum key distribution implemented with d-level time-bin entangled photons
Hao Yu,
Stefania Sciara (),
Mario Chemnitz,
Nicola Montaut,
Benjamin Crockett,
Bennet Fischer,
Robin Helsten,
Benjamin Wetzel,
Thorsten A. Goebel,
Ria G. Krämer,
Brent E. Little,
Sai T. Chu,
Stefan Nolte,
Zhiming Wang,
José Azaña,
William J. Munro,
David J. Moss and
Roberto Morandotti ()
Additional contact information
Hao Yu: Institut national de la recherche scientifique—Centre Énergie Matériaux Télécommunications
Stefania Sciara: Institut national de la recherche scientifique—Centre Énergie Matériaux Télécommunications
Mario Chemnitz: Institut national de la recherche scientifique—Centre Énergie Matériaux Télécommunications
Nicola Montaut: Institut national de la recherche scientifique—Centre Énergie Matériaux Télécommunications
Benjamin Crockett: Institut national de la recherche scientifique—Centre Énergie Matériaux Télécommunications
Bennet Fischer: Institut national de la recherche scientifique—Centre Énergie Matériaux Télécommunications
Robin Helsten: Institut national de la recherche scientifique—Centre Énergie Matériaux Télécommunications
Benjamin Wetzel: University of Limoges
Thorsten A. Goebel: Institute of Applied Physics
Ria G. Krämer: Institute of Applied Physics
Brent E. Little: QXP Technology Inc.
Sai T. Chu: City University of Hong Kong
Stefan Nolte: Institute of Applied Physics
Zhiming Wang: Tianfu Jiangxi Laboratory
José Azaña: Institut national de la recherche scientifique—Centre Énergie Matériaux Télécommunications
William J. Munro: Okinawa Institute of Science and Technology Graduate University
David J. Moss: Swinburne University of Technology
Roberto Morandotti: Institut national de la recherche scientifique—Centre Énergie Matériaux Télécommunications
Nature Communications, 2025, vol. 16, issue 1, 1-10
Abstract:
Abstract High-dimensional photon states (qudits) are pivotal to enhance the information capacity, noise robustness, and data rates of quantum communications. Time-bin entangled qudits are promising candidates for implementing high-dimensional quantum communications over optical fiber networks with processing rates approaching those of classical telecommunications. However, their use is hindered by phase instability, timing inaccuracy, and low scalability of interferometric schemes needed for time-bin processing. As well, increasing the number of time bins per photon state typically requires decreasing the repetition rate of the system, affecting in turn the effective qudit rates. Here, we demonstrate a fiber-pigtailed, integrated photonic platform enabling the generation and processing of picosecond-spaced time-bin entangled qudits in the telecommunication C band via an on-chip interferometry system. We experimentally demonstrate the Bennett-Brassard-Mermin 1992 quantum key distribution protocol with time-bin entangled qudits and extend it over a 60 km-long optical fiber link, by showing dimensionality scaling without sacrificing the repetition rate. Our approach enables the manipulation of time-bin entangled qudits at processing speeds typical of standard telecommunications (10 s of GHz) with high quantum information capacity per single frequency channel, representing an important step towards an efficient implementation of high-data rate quantum communications in standard, multi-user optical fiber networks.
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-55345-0 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55345-0
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-55345-0
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().