Artificial cells with all-aqueous droplet-in-droplet structures for spatially separated transcription and translation
Kanji Tomohara,
Yoshihiro Minagawa and
Hiroyuki Noji ()
Additional contact information
Kanji Tomohara: The University of Tokyo
Yoshihiro Minagawa: The University of Tokyo
Hiroyuki Noji: The University of Tokyo
Nature Communications, 2025, vol. 16, issue 1, 1-11
Abstract:
Abstract The design of functional artificial cells involves compartmentalizing biochemical processes to mimic cellular organization. To emulate the complex chemical systems in biological cells, it is necessary to incorporate an increasing number of cellular functions into single compartments. Artificial organelles that spatially segregate reactions inside artificial cells will be beneficial in this context by rectifying biochemical pathways. Here, we develop artificial cells with all-aqueous droplet-in-droplet structures that separate transcription and translation processes like the nucleus and cytosol in eukaryotic cells. This architecture uses protein-based inner droplets and aqueous two-phase outer compartments, stabilized by colloidal emulsifiers. The inner droplet is designed to enrich DNA and RNA polymerase for transcription, coupled to translation at the outer droplet via mRNA-mediated cascade reactions. We show that these processes proceed independently within each compartment, maintaining genotype-phenotype correspondence. This approach provides a practical tool for exploring complex systems of artificial organelles within large ensembles of artificial cells.
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-55366-9 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55366-9
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-55366-9
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().