Multi-modal conditional diffusion model using signed distance functions for metal-organic frameworks generation
Junkil Park,
Youhan Lee and
Jihan Kim ()
Additional contact information
Junkil Park: Korea Advanced Institute of Science and Technology (KAIST)
Youhan Lee: NVIDIA Corporation
Jihan Kim: Korea Advanced Institute of Science and Technology (KAIST)
Nature Communications, 2025, vol. 16, issue 1, 1-12
Abstract:
Abstract The design of porous materials with user-desired properties has been a great interest for the last few decades. However, the flexibility of target properties has been highly limited, and targeting multiple properties of diverse modalities simultaneously has been scarcely explored. Furthermore, although deep generative models have opened a new paradigm in materials generation, their incorporation into porous materials such as metal-organic frameworks (MOFs) has not been satisfactory due to their structural complexity. In this work, we introduce MOFFUSION, a latent diffusion model that addresses the aforementioned challenges. Signed distance functions (SDFs) are employed for the input representation of MOFs, marking their first usage in representing porous materials for generative models. Using the suitability of SDFs in describing complicated pore structures, MOFFUSION exhibits exceptional generation performance, and demonstrates its versatile capability of conditional generation with handling diverse modalities of data, including numeric, categorical, text data, and their combinations.
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-55390-9 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55390-9
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-55390-9
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().