diaTracer enables spectrum-centric analysis of diaPASEF proteomics data
Kai Li,
Guo Ci Teo,
Kevin L. Yang,
Fengchao Yu () and
Alexey I. Nesvizhskii ()
Additional contact information
Kai Li: University of Michigan
Guo Ci Teo: University of Michigan
Kevin L. Yang: University of Michigan
Fengchao Yu: University of Michigan
Alexey I. Nesvizhskii: University of Michigan
Nature Communications, 2025, vol. 16, issue 1, 1-14
Abstract:
Abstract Data-independent acquisition has become a widely used strategy for peptide and protein quantification in liquid chromatography-tandem mass spectrometry-based proteomics studies. The integration of ion mobility separation into data-independent acquisition analysis, such as the diaPASEF technology available on Bruker’s timsTOF platform, further improves the quantification accuracy and protein depth achievable using data-independent acquisition. We introduce diaTracer, a spectrum-centric computational tool optimized for diaPASEF data. diaTracer performs three-dimensional (mass to charge ratio, retention time, ion mobility) peak tracing and feature detection to generate precursor-resolved “pseudo-tandem mass spectra”, facilitating direct (“spectral-library free”) peptide identification and quantification from diaPASEF data. diaTracer is available as a stand-alone tool and is fully integrated into the widely used FragPipe computational platform. We demonstrate the performance of diaTracer and FragPipe using diaPASEF data from triple-negative breast cancer, cerebrospinal fluid, and plasma samples, data from phosphoproteomics and human leukocyte antigens immunopeptidomics experiments, and low-input data from a spatial proteomics study. We also show that diaTracer enables unrestricted identification of post-translational modifications from diaPASEF data using open/mass-offset searches.
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-55448-8 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55448-8
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-55448-8
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().