Compound electron acceleration at planetary foreshocks
Xiaofei Shi (),
Anton Artemyev,
Vassilis Angelopoulos,
Terry Liu and
Lynn B. Wilson
Additional contact information
Xiaofei Shi: University of California
Anton Artemyev: University of California
Vassilis Angelopoulos: University of California
Terry Liu: University of California
Lynn B. Wilson: Heliophysics Science Division
Nature Communications, 2025, vol. 16, issue 1, 1-11
Abstract:
Abstract Shock waves, the interface of supersonic and subsonic plasma flows, are the primary region for charged particle acceleration in multiple space plasma systems, including Earth’s bow shock, which is readily accessible for in-situ measurements. Spacecraft frequently observe relativistic electron populations within this region, characterized by energy levels surpassing those of solar wind electrons by a factor of 10,000 or more. However, mechanisms of such strong acceleration remain elusive. Here we use observations of electrons with energies up to 200 kiloelectron volts and a data-constrained model to reproduce the observed power-law electron spectrum and demonstrate that the acceleration by more than 4 orders of magnitude is a compound process including a complex, multi-step interaction between more commonly known mechanisms and resonant scattering by several distinct plasma wave modes. The proposed model of electron acceleration addresses a decades-long issue of the generation of energetic (and relativistic) electrons at planetary plasma shocks. This work may further guide numerical simulations of even more effective electron acceleration in astrophysical shocks.
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-55464-8 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55464-8
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-55464-8
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().