A simple model for Behavioral Time Scale Synaptic Plasticity (BTSP) provides content addressable memory with binary synapses and one-shot learning
Yujie Wu and
Wolfgang Maass ()
Additional contact information
Yujie Wu: The Hong Kong Polytechnic University
Wolfgang Maass: Graz University of Technology
Nature Communications, 2025, vol. 16, issue 1, 1-18
Abstract:
Abstract Recent experimental studies in the awake brain have identified a rule for synaptic plasticity that is instrumental for the instantaneous creation of memory traces in area CA1 of the mammalian brain: Behavioral Time scale Synaptic Plasticity. This one-shot learning rule differs in five essential aspects from previously considered plasticity mechanisms. We introduce a transparent model for the core function of this learning rule and establish a theory that enables a principled understanding of the system of memory traces that it creates. Theoretical predictions and numerical simulations show that our model is able to create a functionally powerful content-addressable memory without the need for high-resolution synaptic weights. Furthermore, it reproduces the repulsion effect of human memory, whereby traces for similar memory items are pulled apart to enable differential downstream processing. Altogether, our results create a link between synaptic plasticity in area CA1 of the hippocampus and its network function. They also provide a promising approach for implementing content-addressable memory with on-chip learning capability in highly energy-efficient crossbar arrays of memristors.
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-55563-6 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55563-6
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-55563-6
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().