Mechanism of sensor kinase CitA transmembrane signaling
Xizhou Cecily Zhang,
Kai Xue,
Michele Salvi,
Benjamin Schomburg,
Jonas Mehrens,
Karin Giller,
Marius Stopp,
Siegfried Weisenburger,
Daniel Böning,
Vahid Sandoghdar,
Gottfried Unden,
Stefan Becker (sabe@mpinat.mpg.de),
Loren B. Andreas (land@mpinat.mpg.de) and
Christian Griesinger (cigr@mpinat.mpg.de)
Additional contact information
Xizhou Cecily Zhang: Max Planck Institute for Multidisciplinary Sciences
Kai Xue: Max Planck Institute for Multidisciplinary Sciences
Michele Salvi: Max Planck Institute for Multidisciplinary Sciences
Benjamin Schomburg: Max Planck Institute for Multidisciplinary Sciences
Jonas Mehrens: Max Planck Institute for Multidisciplinary Sciences
Karin Giller: Max Planck Institute for Multidisciplinary Sciences
Marius Stopp: Johannes Gutenberg University
Siegfried Weisenburger: Friedrich Alexander University (FAU) Erlangen-Nürnberg
Daniel Böning: Friedrich Alexander University (FAU) Erlangen-Nürnberg
Vahid Sandoghdar: Friedrich Alexander University (FAU) Erlangen-Nürnberg
Gottfried Unden: Johannes Gutenberg University
Stefan Becker: Max Planck Institute for Multidisciplinary Sciences
Loren B. Andreas: Max Planck Institute for Multidisciplinary Sciences
Christian Griesinger: Max Planck Institute for Multidisciplinary Sciences
Nature Communications, 2025, vol. 16, issue 1, 1-11
Abstract:
Abstract Membrane bound histidine kinases (HKs) are ubiquitous sensors of extracellular stimuli in bacteria. However, a uniform structural model is still missing for their transmembrane signaling mechanism. Here, we used solid-state NMR in conjunction with crystallography, solution NMR and distance measurements to investigate the transmembrane signaling mechanism of a paradigmatic citrate sensing membrane embedded HK, CitA. Citrate binding in the sensory extracytoplasmic PAS domain (PASp) causes the linker to transmembrane helix 2 (TM2) to adopt a helical conformation. This triggers a piston-like pulling of TM2 and a quaternary structure rearrangement in the cytosolic PAS domain (PASc). Crystal structures of PASc reveal both anti-parallel and parallel dimer conformations. An anti-parallel to parallel transition upon citrate binding agrees with interdimer distances measured in the lipid embedded protein using a site-specific 19F label in PASc. These data show how Angstrom scale structural changes in the sensor domain are transmitted across the membrane to be converted and amplified into a nm scale shift in the linker to the phosphorylation subdomain of the kinase.
Date: 2025
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-55671-3 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55671-3
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-55671-3
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla (sonal.shukla@springer.com) and Springer Nature Abstracting and Indexing (indexing@springernature.com).