Improved silicon solar cells by tuning angular response to solar trajectory
Martin A. Green () and
Zibo Zhou
Additional contact information
Martin A. Green: University of New South Wales
Zibo Zhou: University of New South Wales
Nature Communications, 2025, vol. 16, issue 1, 1-8
Abstract:
Abstract Silicon solar cell costs are reducing dramatically with these cells now providing the majority of new electricity generation capacity worldwide. Cost reduction has been via economies of scale and steadily increasing sunlight energy conversion efficiency. The best experimental cells at 27.4% efficiency approach the 29.4% figure almost universally regarded as the limit on silicon cell performance. Here we show that assumptions in deducing this limit are too restrictive, since failing to incorporate sunlight directionality. Furthermore, we show how this directionality and the cell’s angular response can be quantified compatibly, using projections of angular dependencies of both onto the solar module plane. Even simple schemes for exploiting directionality, including installing solar modules facing the equator at near-latitude tilt, increase theoretical limiting efficiency above 29.4%. Highest gains are for cells designed for sunlight tracking systems, including common 1-axis trackers, with such cells having theoretical efficiency limits > 30%. In this work, we provide a strategy for ongoing improvements in commercial cell efficiency over this decade, additionally lowering cost via reduced cell thickness.
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-55681-1 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55681-1
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-55681-1
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().