EconPapers    
Economics at your fingertips  
 

Predicting cell morphological responses to perturbations using generative modeling

Alessandro Palma, Fabian J. Theis () and Mohammad Lotfollahi ()
Additional contact information
Fabian J. Theis: Institute of Computational Biology
Mohammad Lotfollahi: Institute of Computational Biology

Nature Communications, 2025, vol. 16, issue 1, 1-19

Abstract: Abstract Advancements in high-throughput screenings enable the exploration of rich phenotypic readouts through high-content microscopy, expediting the development of phenotype-based drug discovery. However, analyzing large and complex high-content imaging screenings remains challenging due to incomplete sampling of perturbations and the presence of technical variations between experiments. To tackle these shortcomings, we present IMage Perturbation Autoencoder (IMPA), a generative style-transfer model predicting morphological changes of perturbations across genetic and chemical interventions. We show that IMPA accurately captures morphological and population-level changes of both seen and unseen perturbations on breast cancer and osteosarcoma cells. Additionally, IMPA accounts for batch effects and can model perturbations across various sources of technical variation, further enhancing its robustness in diverse experimental conditions. With the increasing availability of large-scale high-content imaging screens generated by academic and industrial consortia, we envision that IMPA will facilitate the analysis of microscopy data and enable efficient experimental design via in-silico perturbation prediction.

Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-55707-8 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55707-8

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-55707-8

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-22
Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55707-8