Taming large-scale genomic analyses via sparsified genomics
Mohammed Alser (),
Julien Eudine and
Onur Mutlu
Additional contact information
Mohammed Alser: ETH Zürich
Julien Eudine: ETH Zürich
Onur Mutlu: ETH Zürich
Nature Communications, 2025, vol. 16, issue 1, 1-21
Abstract:
Abstract Searching for similar genomic sequences is an essential and fundamental step in biomedical research. State-of-the-art computational methods performing such comparisons fail to cope with the exponential growth of genomic sequencing data. We introduce the concept of sparsified genomics where we systematically exclude a large number of bases from genomic sequences and enable faster and memory-efficient processing of the sparsified, shorter genomic sequences, while providing comparable accuracy to processing non-sparsified sequences. Sparsified genomics provides benefits to many genomic analyses and has broad applicability. Sparsifying genomic sequences accelerates the state-of-the-art read mapper (minimap2) by 2.57-5.38x, 1.13-2.78x, and 3.52-6.28x using real Illumina, HiFi, and ONT reads, respectively, while providing comparable memory footprint, 2x smaller index size, and more correctly detected variations compared to minimap2. Sparsifying genomic sequences makes containment search through very large genomes and large databases 72.7-75.88x (1.62-1.9x when indexing is preprocessed) faster and 723.3x more storage-efficient than searching through non-sparsified genomic sequences (with CMash and KMC3). Sparsifying genomic sequences enables robust microbiome discovery by providing 54.15-61.88x (1.58-1.71x when indexing is preprocessed) faster and 720x more storage-efficient taxonomic profiling of metagenomic samples over the state-of-the-art tool (Metalign).
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-55762-1 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55762-1
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-55762-1
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().