Dentate gyrus norepinephrine ramping facilitates aversive contextual processing
Eric T. Zhang,
Grace S. Saglimbeni,
Jiesi Feng,
Yulong Li and
Michael R. Bruchas ()
Additional contact information
Eric T. Zhang: University of Washington
Grace S. Saglimbeni: University of Washington
Jiesi Feng: Peking University School of Life Sciences
Yulong Li: Peking University School of Life Sciences
Michael R. Bruchas: University of Washington
Nature Communications, 2025, vol. 16, issue 1, 1-12
Abstract:
Abstract Dysregulation in aversive contextual processing is believed to affect several forms of psychopathology, including post-traumatic stress disorder (PTSD). The dentate gyrus (DG) is an important brain region in contextual discrimination and disambiguation of new experiences from prior memories. The DG also receives dense projections from the locus coeruleus (LC), the primary source of norepinephrine (NE) in the mammalian brain, which is active during stressful events. However, how noradrenergic dynamics impact DG-dependent function during contextual discrimination and pattern separation remains unclear. Here, we report that aversive contextual processing in mice is linked to linear elevations in tonic norepinephrine release dynamics within the DG and report that this engagement of prolonged norepinephrine release is sufficient to produce contextual disambiguation, even in the absence of a salient aversive stimulus. These findings suggest that spatiotemporal ramping characteristics of LC-NE release in the DG during stress likely serve an important role in driving contextual processing.
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-025-55817-x Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-55817-x
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-025-55817-x
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().