EconPapers    
Economics at your fingertips  
 

Hurricane influence on the oceanic eddies in the Gulf Stream region

Xinning Ni, Yu Zhang () and Wei Wang ()
Additional contact information
Xinning Ni: Ocean University of China
Yu Zhang: Ocean University of China
Wei Wang: Ocean University of China

Nature Communications, 2025, vol. 16, issue 1, 1-9

Abstract: Abstract The Gulf Stream region (GSR) represents an area of robust oceanic eddies, active hurricanes, and more importantly, frequent encounters between the two phenomena. However, the direct impact of the intense storms on the eddy field has seldom been comprehensively examined. Here based on a multi-year analysis of eddy energy changing rate, we demonstrate that hurricanes enhance cyclonic eddies but weaken anticyclonic ones by injecting potential vorticity into the ocean. Such effects are not only pronounced immediately following hurricane-eddy encounters, but also retained for extended periods within large eddies that have long lifespans. Consequently, the variation of the annual mean energy and vorticity of the eddy field exhibits a high correlation with hurricane intensity. It can thus be argued that hurricanes over the GSR play an important role in driving the long-term variation of the underlying eddy field, thereby affecting ocean circulation and climate.

Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-025-55927-6 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-55927-6

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-025-55927-6

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-55927-6