EconPapers    
Economics at your fingertips  
 

Probing spectral features of quantum many-body systems with quantum simulators

Jinzhao Sun (), Lucia Vilchez-Estevez (), Vlatko Vedral, Andrew T. Boothroyd and M. S. Kim
Additional contact information
Jinzhao Sun: University of Oxford
Lucia Vilchez-Estevez: University of Oxford
Vlatko Vedral: University of Oxford
Andrew T. Boothroyd: University of Oxford
M. S. Kim: Imperial College London

Nature Communications, 2025, vol. 16, issue 1, 1-13

Abstract: Abstract The efficient probing of spectral features is important for characterising and understanding the structure and dynamics of quantum materials. In this work, we establish a framework for probing the excitation spectrum of quantum many-body systems with quantum simulators. Our approach effectively realises a spectral detector by processing the dynamics of observables with time intervals drawn from a defined probability distribution, which only requires native time evolution governed by the Hamiltonian without ancilla. The critical element of our method is the engineered emergence of frequency resonance such that the excitation spectrum can be probed. We show that the time complexity for transition energy estimation has a logarithmic dependence on simulation accuracy and how such observation can be guaranteed in certain many-body systems. We discuss the noise robustness of our spectroscopic method and show that the total running time maintains polynomial dependence on accuracy in the presence of device noise. We further numerically test the error dependence and the scalability of our method for lattice models. We present simulation results for the spectral features of typical quantum systems, either gapped or gapless, including quantum spins, fermions and bosons. We demonstrate how excitation spectra of spin-lattice models can be probed experimentally with IBM quantum devices.

Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-025-55955-2 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-55955-2

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-025-55955-2

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-22
Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-55955-2