EconPapers    
Economics at your fingertips  
 

Electron correlation and relativistic effects in the excited states of radium monofluoride

M. Athanasakis-Kaklamanakis (), S. G. Wilkins (), L. V. Skripnikov, Á. Koszorús, A. A. Breier, O. Ahmad, M. Au, S. W. Bai, I. Belošević, J. Berbalk, R. Berger, C. Bernerd, M. L. Bissell, A. Borschevsky, A. Brinson, K. Chrysalidis, T. E. Cocolios, R. P. Groote, A. Dorne, C. M. Fajardo-Zambrano, R. W. Field, K. T. Flanagan, S. Franchoo, R. F. Garcia Ruiz, K. Gaul, S. Geldhof, T. F. Giesen, D. Hanstorp, R. Heinke, P. Imgram, T. A. Isaev, A. A. Kyuberis, S. Kujanpää, L. Lalanne, P. Lassègues, J. Lim, Y. C. Liu, K. M. Lynch, A. McGlone, W. C. Mei, G. Neyens (), M. Nichols, L. Nies, L. F. Pašteka, H. A. Perrett, A. Raggio, J. R. Reilly, S. Rothe, E. Smets, S.-M. Udrescu, B. Borne, Q. Wang, J. Warbinek, J. Wessolek, X. F. Yang and C. Zülch
Additional contact information
M. Athanasakis-Kaklamanakis: CERN
S. G. Wilkins: Massachusetts Institute of Technology
Á. Koszorús: CERN
A. A. Breier: Technische Universität Berlin
O. Ahmad: Instituut voor Kern- en Stralingsfysica
M. Au: Systems Department
S. W. Bai: Peking University
I. Belošević: TRIUMF
J. Berbalk: Instituut voor Kern- en Stralingsfysica
R. Berger: Philipps-Universität Marburg
C. Bernerd: Systems Department
M. L. Bissell: The University of Manchester
A. Borschevsky: University of Groningen
A. Brinson: Massachusetts Institute of Technology
K. Chrysalidis: Systems Department
T. E. Cocolios: Instituut voor Kern- en Stralingsfysica
R. P. Groote: Instituut voor Kern- en Stralingsfysica
A. Dorne: Instituut voor Kern- en Stralingsfysica
C. M. Fajardo-Zambrano: Instituut voor Kern- en Stralingsfysica
R. W. Field: Massachusetts Institute of Technology
K. T. Flanagan: The University of Manchester
S. Franchoo: Laboratoire Irène Joliot-Curie
R. F. Garcia Ruiz: Massachusetts Institute of Technology
K. Gaul: Philipps-Universität Marburg
S. Geldhof: Instituut voor Kern- en Stralingsfysica
T. F. Giesen: Institute of Physics, University of Kassel
D. Hanstorp: University of Gothenburg
R. Heinke: Systems Department
P. Imgram: Instituut voor Kern- en Stralingsfysica
A. A. Kyuberis: University of Groningen
S. Kujanpää: University of Jyväskylä
L. Lalanne: CERN
P. Lassègues: Instituut voor Kern- en Stralingsfysica
J. Lim: Centre for Cold Matter
Y. C. Liu: Peking University
K. M. Lynch: The University of Manchester
A. McGlone: The University of Manchester
W. C. Mei: Peking University
G. Neyens: Instituut voor Kern- en Stralingsfysica
M. Nichols: University of Gothenburg
L. Nies: CERN
L. F. Pašteka: University of Groningen
H. A. Perrett: The University of Manchester
A. Raggio: University of Jyväskylä
J. R. Reilly: The University of Manchester
S. Rothe: Systems Department
E. Smets: Instituut voor Kern- en Stralingsfysica
S.-M. Udrescu: Massachusetts Institute of Technology
B. Borne: Instituut voor Kern- en Stralingsfysica
Q. Wang: Lanzhou University
J. Warbinek: GSI Helmholtzzentrum für Schwerionenforschung GmbH
J. Wessolek: Systems Department
X. F. Yang: Peking University
C. Zülch: Philipps-Universität Marburg

Nature Communications, 2025, vol. 16, issue 1, 1-11

Abstract: Abstract Highly accurate and precise electronic structure calculations of heavy radioactive atoms and their molecules are important for several research areas, including chemical, nuclear, and particle physics. Ab initio quantum chemistry can elucidate structural details in these systems that emerge from the interplay of relativistic and electron correlation effects, but the large number of electrons complicates the calculations, and the scarcity of experiments prevents insightful theory-experiment comparisons. Here we report the spectroscopy of the 14 lowest excited electronic states in the radioactive molecule radium monofluoride (RaF), which is proposed as a sensitive probe for searches of new physics. The observed excitation energies are compared with state-of-the-art relativistic Fock-space coupled cluster calculations, which achieve an agreement of ≥99.64% (within ~12 meV) with experiment for all states. Guided by theory, a firm assignment of the angular momentum and term symbol is made for 10 states and a tentative assignment for 4 states. The role of high-order electron correlation and quantum electrodynamics effects in the excitation energies is studied and found to be important for all states.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-025-55977-w Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-55977-w

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-025-55977-w

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-22
Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-55977-w