Energy and climate policy implications on the deployment of low-carbon ammonia technologies
Chi Kong Chyong (),
Eduardo Italiani and
Nikolaos Kazantzis
Additional contact information
Chi Kong Chyong: Oxford Institute for Energy Studies
Eduardo Italiani: Columbia University
Nikolaos Kazantzis: Worcester Polytechnic Institute
Nature Communications, 2025, vol. 16, issue 1, 1-13
Abstract:
Abstract The economic feasibility of low-carbon ammonia production pathways, such as steam methane reforming with carbon capture and storage, biomass gasification, and electrolysis, is assessed under various policy frameworks, including subsidies, carbon pricing, and renewable hydrogen regulations. Here, we show that employing a stochastic techno-economic analysis at the plant level and a net present value approach under the US Inflation Reduction Act reveals that carbon capture and biomass pathways demonstrate strong economic potential due to cost-effectiveness and minimal public support needs. Conversely, the electrolytic pathway faces significant economic challenges due to higher costs and lower efficiency. We conclude that efficient decarbonization of ammonia production requires adapting the Haber-Bosch process for variable bioenergy quality, ensuring safe CO2 transport and storage, advancing research to lower costs and improve efficiency in renewable energy and storage technologies, as well as creating a technologically neutral policy framework.
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-025-56006-6 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56006-6
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-025-56006-6
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().