EconPapers    
Economics at your fingertips  
 

Densely populated macrocyclic dicobalt sites in ladder polymers for low-overpotential oxygen reduction catalysis

Zhen Zhang, Zhenyu Xing, Xianglin Luo, Chong Cheng () and Xikui Liu ()
Additional contact information
Zhen Zhang: Sichuan University
Zhenyu Xing: Sichuan University
Xianglin Luo: Sichuan University
Chong Cheng: Sichuan University
Xikui Liu: Sichuan University

Nature Communications, 2025, vol. 16, issue 1, 1-12

Abstract: Abstract Dual-atom catalysts featuring synergetic dinuclear active sites, have the potential of breaking the linear scaling relationship of the well-established single-atom catalysts for oxygen reduction reaction; however, the design of dual-atom catalysts with rationalized local microenvironment for high activity and selectivity remains a great challenge. Here we design a bisalphen ladder polymer with well-defined densely populated binuclear cobalt sites on Ketjenblack substrates. The strong electron coupling effect between the fully-conjugated ladder structure and carbon substrates enhances the electron transfer between the cobalt center and oxygen intermediates, inducing the low-to-high spin transition for the 3d electron of Co(II). In situ techniques and theoretical calculations reveal the dynamic evolution of Co2N4O2 active sites and reaction intermediates. In alkaline conditions, the catalyst exhibits impressive oxygen reduction reaction activity featuring an onset potential of 1.10 V and a half-wave potential of 1.00 V, insignificant decay after 30,000 cycles, pushing the overpotential boundaries of ORR electrocatalysis to a low level. This work provides a platform for designing efficient dual-atom catalysts with well-defined coordination and electronic structures in energy conversion technologies.

Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-025-56066-8 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56066-8

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-025-56066-8

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-22
Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56066-8