EconPapers    
Economics at your fingertips  
 

In-situ probing of the Fischer-Tropsch reaction on Co single crystal surfaces up to 1 bar

Patrick Lömker (patrick.loemker@fysik.su.se), David Degerman, Christopher M. Goodwin, Mikhail Shipilin, Peter Amann, Gabriel L. S. Rodrigues, Fernando Garcia-Martinez, Raffael Rameshan, Jörgen Gladh, Hsin-Yi Wang, Markus Soldemo, Alexander Holm, Steffen Tober, Jan-Christian Schober, Leon Jacobse, Vedran Vonk, Robert Gleißner, Heshmat Noei, Zoltan Hegedues, Andreas Stierle, Christoph Schlueter and Anders Nilsson (andersn@fysik.su.se)
Additional contact information
Patrick Lömker: Stockholm University
David Degerman: Stockholm University
Christopher M. Goodwin: Stockholm University
Mikhail Shipilin: Stockholm University
Peter Amann: Stockholm University
Gabriel L. S. Rodrigues: Stockholm University
Fernando Garcia-Martinez: Deutsches Elektronen-Synchrotron DESY
Raffael Rameshan: Montanuniversität Leoben
Jörgen Gladh: Stockholm University
Hsin-Yi Wang: Stockholm University
Markus Soldemo: Stockholm University
Alexander Holm: Stockholm University
Steffen Tober: 22607
Jan-Christian Schober: 22607
Leon Jacobse: 22607
Vedran Vonk: 22607
Robert Gleißner: 22607
Heshmat Noei: 22607
Zoltan Hegedues: Deutsches Elektronen-Synchrotron DESY
Andreas Stierle: 22607
Christoph Schlueter: Deutsches Elektronen-Synchrotron DESY
Anders Nilsson: Stockholm University

Nature Communications, 2025, vol. 16, issue 1, 1-10

Abstract: Abstract The surface chemistry of the Fischer-Tropsch catalytic reaction over Co has still several unknows. Here, we report an in-situ X-ray photoelectron spectroscopy study of Co $$\left(0001\right)$$ 0001 and Co( $$10\bar{1}4$$ 10 1 ¯ 4 ), and in-situ high energy surface X-ray diffraction of Co $$\left(0001\right),$$ 0001 , during the Fischer-Tropsch reaction at 0.15 bar - 1 bar and 406 K - 548 K in a H2/CO gas mixture. We find that these Co surfaces remain metallic under all conditions and that the coverage of chemisorbed species ranges from 0.4–1.7 monolayers depending on pressure and temperature. The adsorbates include CO on-top, C/-CxHy and various longer hydrocarbon molecules, indicating a rate-limiting direct CO dissociation pathway and that only hydrocarbon species participate in the chain growth. The accumulation of hydrocarbon species points to the termination step being rate-limiting also. Furthermore, we demonstrate that the intermediate surface species are highly dynamic, appearing and disappearing with time delays after rapid changes in the reactants’ composition.

Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-025-56082-8 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56082-8

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-025-56082-8

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla (sonal.shukla@springer.com) and Springer Nature Abstracting and Indexing (indexing@springernature.com).

 
Page updated 2025-03-22
Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56082-8