Spatiotemporal observation of surface plasmon polariton mediated ultrafast demagnetization
Yuzhu Fan,
Gaolong Cao,
Sheng Jiang,
Johan Åkerman and
Jonas Weissenrieder ()
Additional contact information
Yuzhu Fan: AlbaNova
Gaolong Cao: AlbaNova
Sheng Jiang: South China University of Technology
Johan Åkerman: University of Gothenburg
Jonas Weissenrieder: AlbaNova
Nature Communications, 2025, vol. 16, issue 1, 1-9
Abstract:
Abstract Surface plasmons offer a promising avenue in the pursuit of swift and localized manipulation of magnetism for advanced magnetic storage and information processing technology. However, observing and understanding spatiotemporal interactions between surface plasmons and spins remains challenging, hindering optimal optical control of magnetism. Here, we demonstrate the spatiotemporal observation of patterned ultrafast demagnetization dynamics in permalloy mediated by propagating surface plasmon polaritons with sub-picosecond time- and sub-μm spatial- scales by employing Lorentz ultrafast electron microscopy combined with excitation through transient optical gratings. We discover correlated spatial distributions of demagnetization amplitude and surface plasmon polariton intensity, the latter characterized by photo-induced near-field electron microscopy. Furthermore, by comparing the results with patterned ultrafast demagnetization dynamics without surface plasmon polariton interaction, we show that the demagnetization is not only enhanced but also exhibits a spatiotemporal modulation near a spatial discontinuity (plasmonic hot spot). Our findings shed light on the intricate interplay between surface plasmons and spins, offer insights into the optimized control of optical excitation of magnetic materials and push the boundaries of ultrafast manipulation of magnetism.
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-025-56158-5 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56158-5
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-025-56158-5
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().