EconPapers    
Economics at your fingertips  
 

Passive highly dispersive matching network enabling broadband electromagnetic absorption

Pardha S. Nayani, Morteza Moradi, Pooria Salami and Younes Ra’di ()
Additional contact information
Pardha S. Nayani: Syracuse University
Morteza Moradi: Syracuse University
Pooria Salami: Syracuse University
Younes Ra’di: Syracuse University

Nature Communications, 2025, vol. 16, issue 1, 1-13

Abstract: Abstract In numerous applications from radio to optical frequencies including stealth and energy harvesting, there is a need to design electrically thin layers capable of perfectly absorbing electromagnetic waves over a wide bandwidth. However, a theoretical upper bound exists on the bandwidth-to-thickness ratio of metal-backed, passive, linear, and time-invariant absorbing layers. Absorbers developed to date, irrespective of their operational frequency range or material thickness, significantly underperform when compared to this upper bound, failing to exploit the full potential that passive, linear, and time-invariant systems can provide. Here, we introduce a new concept for designing ultra-thin absorbers that enables absorbing layers with a record-high bandwidth-to-thickness ratio, potentially several times greater than that of absorbers designed using conventional approaches. Absorbers designed based on this concept can achieve a bandwidth-to-thickness ratio arbitrarily close to the ultimate bound. Utilizing this concept, we design and experimentally verify an absorber yielding a very high bandwidth-to-thickness ratio.

Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-025-56167-4 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56167-4

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-025-56167-4

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56167-4