SAMHD1 shapes deoxynucleotide triphosphate homeostasis by interconnecting the depletion and biosynthesis of different dNTPs
Claudia McCown,
Corey H. Yu and
Dmitri N. Ivanov ()
Additional contact information
Claudia McCown: UT Health San Antonio
Corey H. Yu: UT Health San Antonio
Dmitri N. Ivanov: UT Health San Antonio
Nature Communications, 2025, vol. 16, issue 1, 1-13
Abstract:
Abstract SAMHD1 is a dNTPase that impedes replication of HIV-1 in myeloid cells and resting T lymphocytes. Here we elucidate the substrate activation mechanism of SAMHD1, which involves dNTP binding at allosteric sites and transient tetramerization. Our findings reveal that tetramerization alone is insufficient to promote dNTP hydrolysis; instead, the activation mechanism requires an inactive tetrameric intermediate with partially occupied allosteric sites. The equilibrium between inactive and active tetrameric states regulates dNTPase activity, driven by the binding and dissociation of additional allosteric dNTP ligands to the preassembled tetramer. Furthermore, catalytic efficiency, but not substrate specificity, is modulated by the identity of the dNTPs occupying the allosteric sites. We show how this allosteric regulation shapes deoxynucleotide homeostasis by balancing dNTP production and SAMHD1-catalyzed depletion. Notably, SAMHD1 exhibits a distinct functionality, which we term facilitated dNTP depletion, whereby increased biosynthesis of certain dNTPs enhances the depletion of others. The regulatory relationship between the biosynthesis and depletion of different dNTPs sheds light on the emerging role of SAMHD1 in the biology of dNTP homeostasis with implications for HIV/AIDS, innate antiviral immunity, T cell disorders, telomere maintenance and therapeutic efficacy of nucleoside analogs.
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-025-56208-y Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56208-y
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-025-56208-y
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().