EconPapers    
Economics at your fingertips  
 

Increasing certainty in projected local extreme precipitation change

Chao Li (), Jieyu Liu, Fujun Du, Francis W. Zwiers and Guolin Feng
Additional contact information
Chao Li: East China Normal University
Jieyu Liu: Lanzhou University
Fujun Du: East China Normal University
Francis W. Zwiers: University of Victoria
Guolin Feng: Yangzhou University

Nature Communications, 2025, vol. 16, issue 1, 1-12

Abstract: Abstract The latest climate models project widely varying magnitudes of future extreme precipitation changes, thus impeding effective adaptation planning. Many observational constraints have been proposed to reduce the uncertainty of these projections at global to sub-continental scales, but adaptation generally requires detailed, local scale information. Here, we present a temperature-based adaptative emergent constraint strategy combined with data aggregation that reduces the error variance of projected end-of-century changes in annual extremes of daily precipitation under a high emissions scenario by >20% across most areas of the world. These improved projections could benefit nearly 90% of the world’s population by permitting better impact assessment and adaptation planning at local levels. Our physically motivated strategy, which considers the thermodynamic and dynamic components of projected extreme precipitation change, exploits the link between global warming and the thermodynamic component of extreme precipitation. Rigorous cross-validation provides strong evidence of its reliability in constraining local extreme precipitation projections.

Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-025-56235-9 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56235-9

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-025-56235-9

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56235-9